L-R-smash biproducts, double biproducts and a braided category of Yetter-Drinfeld-Long bimodules

نویسندگان

  • Florin Panaite
  • Freddy Van Oystaeyen
چکیده

Let H be a bialgebra and D an H-bimodule algebra and H-bicomodule coalgebra. We find sufficient conditions on D for the L-R-smash product algebra and coalgebra structures on D ⊗ H to form a bialgebra (in this case we say that (H,D) is an L-R-admissible pair), called L-R-smash biproduct. The Radford biproduct is a particular case, and so is, up to isomorphism, a double biproduct with trivial pairing. We construct a prebraided monoidal category LR(H), whose objects are H-bimodules H-bicomodules M endowed with leftleft and right-right Yetter-Drinfeld module as well as left-right and right-left Long module structures over H , with the property that, if (H,D) is an L-R-admissible pair, then D is a bialgebra in LR(H).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yetter-drinfeld Modules over Weak Hopf Algebras and the Center Construction

We introduce Yetter-Drinfeld modules over a weak Hopf algebra H, and show that the category of Yetter-Drinfeld modules is isomorphic to the center of the category of H-modules. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak DoiHopf modules, and, a fortiori, a...

متن کامل

ar X iv : m at h / 04 09 59 9 v 3 [ m at h . Q A ] 1 A pr 2 00 5 YETTER - DRINFELD MODULES OVER WEAK BIALGEBRAS

We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and p...

متن کامل

Yetter-drinfeld Modules over Weak Bialgebras

We discuss properties of Yetter-Drinfeld modules over weak bialgebras over commutative rings. The categories of left-left, left-right, right-left and right-right Yetter-Drinfeld modules over a weak Hopf algebra are isomorphic as braided monoidal categories. Yetter-Drinfeld modules can be viewed as weak Doi-Hopf modules, and, a fortiori, as weak entwined modules. If H is finitely generated and p...

متن کامل

Braided Hopf Algebras Obtained from Coquasitriangular Hopf Algebras

Let (H, σ) be a coquasitriangular Hopf algebra, not necessarily finite dimensional. Following methods of Doi and Takeuchi, which parallel the constructions of Radford in the case of finite dimensional quasitriangular Hopf algebras, we define Hσ , a sub-Hopf algebra of H, the finite dual of H. Using the generalized quantum double construction and the theory of Hopf algebras with a projection, we...

متن کامل

Biproducts and Two-cocycle Twists of Hopf Algebras

Let H be a Hopf algebra with bijective antipode over a field k and suppose that R#H is a bi-product. Then R is a bialgebra in the Yetter–Drinfel’d category HYD. We describe the bialgebras (R#H) and (R#H) explicitly as bi-products R#Hop and R#H respectively where R is a bialgebra in H op HopYD and R o is a bialgebra in H o HoYD. We use our results to describe two-cocycle twist bialgebra structur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008